Cadet and STEM senior lectures on aeronautics
Capt. Peter Higgins, CAP, PhD
1. Model Rocketry 
The height reached in the flight of models can be determined by observation only, by observation and trigonometry, or it can be forecast using fundamental physics. 
1.1 Determine height of flight by observation only or using a little trigonometry

Starting from the launch stand pace off (measuring is better) at least 300 ft. Twice this is better. Observe the rocket in one of two ways. In either case follow the rocket flight by observing through a tube, such as the cardboard tube from a role of paper towels.

Using a second person holding a pole with the lower end held up to your observing height, have this person approach you until the top of the pole intersects your view of the maximum height of the rocket. This must be done quickly. Now measure how far he is from you. Alternatively, have him stand near you with the bottom of the pole held to your eye level, then estimate where on the pole the rocket reached. This second method can be done with a yardstick.
To employ trigonometry, use the inclination app on a cell phone, like an iphone, having a second person hold it against the tube you are looking through. Read the inclination angle of maximum height. These methods are summarized in the figure below.
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1.2  Rocket velocity and height of flight predicted by fundamentals
Suppose a small model rocket contains a blackpowder engine, B 6.4 known to have an impulse of 5 Ns. When this rocket motor is attached to a Quest America rocket the total weight is measured to be 40g.
What is the initial velocity when the engine burns out?
Start with Newton’s second law:
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In Newton’s original form:
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Since:
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Multiply both sides by dt and integrate:
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Noting that, by definition:
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We end up with:
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Since the initial velocity (fixed on the stand is zero, we have the velocity imparted by the impulse:
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Based on the above, we have an initial velocity of:
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1.2.1 Now we know its initial velocity off its stand, how high will it go?
One way to compute this is from conservation of energy. Using this principle, we will equate the energy the rocket assembly has at lift off to the purely potential energy it gains at maximum altitude. It's important to understand that this approach is an idealization because energy is lost on the way up  due to friction of the air on the body of the rocket called drag. Drag will cause the rocket to not go as high. Nevertheless, equating dynamic to potential energy will tell us the maximum altitude assuming it is launched straight up.
The initial kinetic energy for the velocity of impulse, and its mass is:
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When the rocket reaches maximum altitude, its velocity is zero and all the kinetic energy has been converted to gravitational potential energy according to:
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To be rigorous we would account for the reduced mass, since the propellant has burned. The height obtained is found be equating these two expressions:
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Plugging in the numbers for the Quest America, and the B6.4 motor, we have:
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1.2.2 There is another way to estimate maximum height based on projectile physics.
The formula for the velocity of the rocket at any time, t, after lift off is:
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Let's solve this expression to find the time when v(t) = 0 because this will occur at the top of flight. In this case:
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Returning to the equation for velocity, lets integrate it to get distance:
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Yielding:
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1.2.3  Estimating drag
Experiment will show that a model rocket will not go as high as the calculations above predict. Why not, you ask.
The answer is drag – the effect of air pushing against the nose and fins along with the frictional effect of the air stream along the body. In the latter case prediction of the retarding drag forces is complicated by the fact that these forces vary with the air flow speed. Air speed over the body of the rocket can be categorized as low or high speed flow. If the speed is not to fast, then the flow is named laminar, a description referring to layers slipping over one another, and if you could put dye in the flow, it would have regular streamlines. On the other hand a faster flow becomes disorderly with twists and turns in these streamline and this type flow is called turbulent.
Furthermore in slow, laminar flow the transition from the flow being slowed down right next to the rocket's skin (the flow is actually zero at the skin's surface) out to where the flow is undisturbed by the rocket's flight, is thinner than is the case when the flow becomes turbulent. The zone where the flow is affected by the rocket is named the boundary layer. Experiment shows us that the boundary layer also thickens from rocket nose to its tail. Below is a figure from a thesis illustrating flow about a rocket in flight and the various kinds of drag forces that result.
[image: image20.jpg]Louoar bouadary bayer Turbulentboundary ayer

/ T if;; =7
\ /‘ “7"_\\\ \\\‘

. Pansiic e
Skinficion drag e

\ Body pressure drag
b Fin-baly interference drag
(supersonic





In case you are wondering, the type of flow, either laminar or turbulent has been studied by experiment and the results have been described by a number, called the Reynolds number computed by the speed of the flow and a characteristic dimension of the rocket. It comes from the equation:
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Here v is flow velocity, D is a dimension (sometimes diameter, or length along the rocket) and υ is called the kinematic viscosity of the airstream.
1.2.3.1 A general equation for drag
In terms of area of a rocket exposed to the airstream, the forces of drag are estimated by this equation:
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Here, ρ is air density, 1.225 Kg/m3, V is air stream velocity, Ar is an area (either nose cross section, or exposed surface depending on the drag coefficient used) and Cd is an experimentally determined coefficient called the drag coefficient.
Sources of numerical values of Cd 
NASA has studied Cd as published in the figure below.
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1.2.3.2 Estimating performance using numerical analysis.
As an exercise in illustrating the effect of drag in reducing the maximum altitude that your model rocket can reach given the impulse from its engine, let's take the drag coefficient to be Cd = 1.14 as is appropriate to the nose shape of the quest america  rocket studied above.
One way to make this study is with numerical analysis in an Excel spreadsheet. 
	drag g

		no drag

	with drag

	w/o drag

	with drag


	g'

	T
	v'

	v

	h,ft

	h,ft


		0.00

	125.00

	125

	0

	0


	186.44

	0.20

	123.04

	86

	81

	56


	180.55

	0.40

	121.08

	85

	160

	112


	174.74

	0.60

	119.11

	84

	238

	167


	169.03

	0.80

	117.15

	83

	315

	222


	163.42

	1.00

	115.19

	83

	391

	276



	


The analysis was done in small pieces, in this case every 0.2 seconds. If better accuracy is need, make this time slice smaller, say every 0.1 seconds.
At time, t=0, a very small time after launch when the rocket motor has burned out imparting an impulse to the rocket body propelling it upward, we found this initial velocity to be 125 m/s. (see above).
Now we first compute the rocket's velocity as it zooms upward according to the formulas in the first part of this paper giving the list of diminishing velocities tabulated in the second column labeled “no drag”. The velocities given here are retarded only by the pull of gravity. These velocities propel our rocket to heights in feet shown in the column, labeled “w/o drag”. The rocket theoretically reaches over 2500 feet. 
But, we know drag lowers its altitude. One way to think of this is that drag forces result in an additional upward acceleration, called g' and tabulated in the first column which is computed from our formula for drag.
We can now combine the downward g from gravity with the upward g from drag and get a new velocity profile tabulated in the fourth column under “v”. Based on a new velocity profile done in small time steps, we can determine the upward travel of our rocket in each time slice and add this to the height reached in the previous time slice. This revised height profile is tabulated in column 6 under the label, “with drag”. As can be seen, maximum altitude comes earlier, and the rocket only gets to slightly over 2000 feet. Plots of height and velocity for these two altitude cases are shown below.
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